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Abstract

An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described
by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director
vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for
the proposed formulation. The control points are in general not located on the shell reference surface and thus, several
choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical
description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values
thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to
that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation
of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy be-
tween interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact
evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation
which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement
allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for
applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for
large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior
accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free
form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields
considerable savings in computation cost for a predefined error bound.
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1. Introduction

The two main theories in shell analysis for engineering applications are the Kirchhoff-Love and the Reissner-
Mindlin shell theory. The shear-deformable Reissner-Mindlin shell theory has to be used to describe thick shells.
While the Reissner-Mindlin shell theory can also be applied to thin shells, the Kirchhoff-Love theory is limited to the
latter.

Kirchhoff-Love shells require C1 continuity which is difficult to achieve for standard finite elements based on
Lagrange shape functions. NURBS surfaces offer this continuity throughout a whole patch, which allows the im-
plementation of isogeometric Kirchhoff-Love shells, see [1]. But the lack of rotational degrees of freedom entails
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problems regarding the imposition of boundary conditions. The connection of multiple patches requires additional
efforts as C0 continuity prevails at the border of patches [2].

The various locking phenomena occurring in Reissner-Mindlin shell analysis when applied to thin shells almost
vanish when the order of the NURBS basis functions is elevated [3]. This renders Reissner-Mindlin shells more
flexible in comparison to Kirchhoff-Love shells and opens a wide field of applications. The imposition of boundary
conditions and the connection of multiple patches is straight-forward for Reissner-Mindlin shells. An isogeometric
implementation based on a degenerated solid is described in [4].

Isogeometric analysis based on NURBS surfaces offers Cp−1 continuity throughout the element, which guaranties
at least C1 continuity for curved domains. This higher continuity allows a continuous determination of the normal
vector. In contrast to that standard finite elements do not offer this possibility and thus have to rely on discrete
predefined nodal director vectors. Depending on the interpolation strategy for rotations discrete nodal values of
directors might also be needed in isogeometric Reissner-Mindlin shell analysis. In order to avoid any negative impact
on the quality of the results these nodal values have to be chosen in a way, that the interpolated initial director vectors
exactly coincide with the normal vectors derived from the geometry. In [5] additional factors computed on the element
level to attain an exact interpolation of the normal vectors are proposed to overcome this issue. However this rotation-
free shell is based on a discrete Kirchhoff formulation and thus neglects transverse shear deformations.

In this work we present a method to calculate exact nodal director vectors and nodal basis systems. This is done
in a preprocess with a global system of equations and allows to use the unaltered NURBS basis functions for the
interpolation of the director vector and the rotations. The proposed nonlinear Reissner-Mindlin shell formulation is
derived from the continuum theory as proposed in [6]. It comprises a more accurate approach for the interpolation of
the current director vector. The introduced interpolation maintains the orthogonality of the reference director vector
and ensures the inextensibility of the shell. A new approach for the approximation of the variation of the director
vector is proposed. The resulting formulation does not interpolate the director vectors but rather the rotation angles.
No measures are taken against locking as computations with high order basis functions are the main objective of this
contribution.

In Section 2 a short introduction to isogeometric analysis is given. All symbols and variables needed for the
presented shell theory are defined. Section 3 contains the Reissner-Mindlin shell theory necessitating the definition
of a director vector. The computation of discrete nodal director vectors needed to interpolate this director vector
is investigated in Section 4. Here the new method entailing exactly interpolated director vectors is proposed. The
isogeometric finite element implementation of the presented nonlinear shell theory is given in Section 5. A new
approach for the interpolation of the variation of the director vector is presented. Numerical examples in Section 6
demonstrate the capability of the proposed shell formulation and compare it to existing formulations.

2. Basic NURBS terminology for isogeometric shell analysis

The presented shell formulation is based on a NURBS-based geometry description as well as interpolation is
realized with the corresponding NURBS basis function. All variables and formulae needed for the shell formulation
are briefly introduced. Details about the underlying algorithms can be found in [7, 8]. The terminology is in some
points altered to be suitable to the shell formulation which follows [9].

A NURBS curve of order p is uniquely described by a set of n 4-dimensional control points

Bi =
[
xi, yi, zi,wi

]T
=

[
XT

i ,wi

]T
(1)

with i = 1, · · · , n and a knot vector Ξ =
{
ξ1, ξ2, · · · , ξn+p+1

}
. The knot vector must be non-decreasing and open, which

means that the first and the last entry have to be repeated p + 1 times. The B-Spline basis functions N p
i for a given

knot vector Ξ are defined with the recursive Cox-de Boor formula beginning with order p = 0:

p = 0 : N0
i (ξ) =

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

p > 0 : N p
i (ξ) =

ξ − ξi

ξi+p − ξi
N p−1

i (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1

i+1 (ξ)

(2)
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By tensor-product combination of two knot vectors Ξ1 =
{
ξ1

1 , ξ
1
2 , · · · , ξ

1
n+p+1

}
and Ξ2 =

{
ξ2

1 , ξ
2
2 , · · · , ξ

2
m+q+1

}
NURBS

surface patches can be created. The control points

Bi j =
[
xi j, yi j, zi j,wi j

]T
=

[
XT

I ,wi j

]T
(3)

form a n × m control point net which is projected from a 4-dimensional space R4 to a surface embedded in a 3-
dimensional space R3 with the NURBS basis functions NI . The index I of the NURBS basis functions is a specified
function of the indices i and j of the B-Splines basis functions. With

W
(
ξ1, ξ2

)
=

n∑
i=1

m∑
j=1

N p
i

(
ξ1

)
Nq

j

(
ξ2

)
wi j (4)

the NURBS surface basis functions are given as

NI

(
ξ1, ξ2

)
=

N p
i

(
ξ1

)
Nq

j

(
ξ2

)
wi j

W
(
ξ1, ξ2) (5)

under consideration of the weights wi j. In [7] it is shown, that for univariate B-Splines for every ξ ∈ Ξ only p+1 basis
functions are not equal to zero. Accordingly, nen = (p + 1) (q + 1) specified basis functions have an impact on one
arbitrary element. The total number of control points per patch computes to nnp = n × m and the number of elements
per patch is given by nel = (n − p) (m − q). Finally a physical point X on the NURBS surface can be determined with

X
(
ξ1, ξ2

)
=

nen∑
I=1

NI

(
ξ1, ξ2

)
XI . (6)

The derivatives of bivariate NURBS basis functions with respect to the parametric coordinates ξα read

∂

∂ξα
NI = wi j

W ∂
∂ξα

(
N p

i Nq
j

)
− ∂

∂ξα
(W) N p

i Nq
j

W2 (7)

with
∂

∂ξ
N p

i =
p

ξi+p − ξi
N p−1

i −
p

ξi+p+1 − ξi+1
N p−1

i+1 , (8)

where the dependence on
(
ξ1, ξ2

)
is not displayed for the sake of clarity. For further details and an efficient algorithm

see [7].

3. Reissner-Mindlin shell theory

The proposed shell element is formulated with a Reissner-Mindlin kinematic to incorporate transverse shear
strains, which cannot be neglected in thick shell anaylsis. A rotational update formulation for the inextensible di-
rector vector field allows for large rotations. The derivation of the shell formulation from the continuum theory bases
on the direct approach proposed by [6]. The variational formulation is pure displacement based. As locking almost
vanishes with rising order p of the NURBS basis functions no further measures are considered herein. Arbitrary
nonlinear constitutive models can be combined with the proposed element formulation. As the focus of this contri-
bution lies on the kinematic description details about the constitutive equations are omitted. All presented numerical
examples are computed with a linear St. Venant-Kirchhoff-type material law.

3.1. Kinematics

The location of any physical point on the shell is given by

Φ
(
ξi
)

= X (ξα) + ξ3D (ξα) (9)
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Figure 1: Reference and current configuration of the shell.

in the reference configuration B0 and by
φ
(
ξi
)

= x (ξα) + ξ3d (ξα) (10)

in the current configuration B, see Fig. 1. If not specified differently Greek indices range from 1 to 2 and Latin indices
from 1 to 3. ξ3 defines the thickness coordinate and runs from −h/2 to h/2. X (ξα) and x (ξα) denote position vectors
on the shell mid-surface Ω. The reference director vector

|D (ξα) | = 1 (11)

is perpendicular to the shell mid-surface and therefore identical to the normal vector. The current director d is com-
puted via an orthogonal transformation d = RD with an rotation tensor R ∈ S O (3). The use of an orthogonal
transformation ensures the inextensibility of the director. The covariant basis vectors Gα are defined as the derivatives
of the position vectors Φ and φ with respect to the coordinates ξα. This results in

Gα = X,α + ξ3D,α G3 = D

gα = x,α + ξ3d,α g3 = d ,
(12)

where subscript comma denotes derivation with respect to the parametric coordinates ξα. With the relation

Gi ·G j = δ
j
i (13)

containing the Kornecker-Delta δ j
i the contravariant basis vectors Gi are defined. The covariant basis vectors on the

shell reference surface for ξ3 = 0 are named G0
α and g0

α. Their contravariant counterparts are analogously defined.
With the determinant µ = det Z of the shifter tensor Z = Gk ⊗G0 k area and volume integrals read∫

dA =

∫ ∣∣∣G0
1 ×G0

2

∣∣∣ dξ1dξ2∫
dV =

∫
µ
∣∣∣G0

1 ×G0
2

∣∣∣ dξ1dξ2dξ3 .

(14)

3.2. Strains and stresses

With the deformation gradient F = Grad x the nonlinear Green-Lagrange strain tensor used as strain measure can
be expressed by

E =
1
2

(
FT F − 1

)
= Ei j Gi ⊗G j (15)
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with covariant components

Ei j =
1
2

(
φ,i · φ, j −Φ,i ·Φ, j

)
. (16)

The tensorial components Ei j are organized as resulting shell strains

εαβ =
1
2

(
x,α · x,β − X,α · X,β

)
καβ =

1
2

(
x,α · d,β + x,β · d,α − X,α · D,β − X,β · D,α

)
γα = x,α · d − X,α · D

(17)

to provide an efficient formulation. Here εαβ denotes the membrane strains, καβ the curvatures and γα the shear strains.
The relation to the Green-Lagrange strain components is given as

Eαβ = εαβ + ξ3καβ +
(
ξ3

)2
ραβ

2E13 = γα

E33 = 0 .

(18)

With respect to thin shells the second order curvatures ραβ are neglected. The vector of the resulting shell strains in
Voigt notation reads

ε =
[
ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2

]T (19)

and is work-conjugate to the vector of the stress resultants of the Second Piola-Kirchhoff stress tensor

σ =
[
n11, n22, n12,m11,m22,m12, q1, q2

]T
. (20)

The latter vector consists of membrane forces nαβ =
∫
ξ3 S αβµdξ3, bending moments mαβ =

∫
ξ3 S αβµξ3dξ3 and shear

forces qα =
∫
ξ3 S α3µdξ3.

3.3. Variational formulation

The presented shell is based on a pure displacement formulation. Loads are restricted to conservative surface loads
p̄ on the reference surface Ω0 and Neumann conditions t̄ on the boundary Γt. Loading is assumed to be static. The
potential hence reads

Π (v) =

∫
B0

W (ε) dV −
∫

Ω0

uT p̄ dA −
∫

Γt

uT t̄ ds (21)

where the strain energy function W is defined by the used material law. The independent displacement vector v =

[u,ω]T contains the displacements u and the rotational parameters ω of the shell mid-surface. With δW = σ · δε the
variation of the potential

δΠ (v, δv) =

∫
B0

δεTσ dV −
∫

Ω0

δuT p̄ dA −
∫

Γt

δuT t̄ ds = 0 (22)

leads to the weak form G (v, δv) if virtual deformations are used as test functions. The vector
δε =

[
δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2

]T contains the virtual shell strains

δεαβ =
1
2

(
δx,α · x,β + δx,β · x,α

)
δκαβ =

1
2

(
δx,α · d,β + δx,β · d,α + δd,α · x,β + δd,β · x,α

)
δγα = δx,α · d + δd · x,α .

(23)
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3.4. Second variation ot the potential

The nonlinear problem (22) is solved by applying the Newton-Raphson scheme. The necessary linearization of
the weak form

L [G (v, δv)] = G + D G · ∆v (24)

entails the need for the second variation of the potential (21). This is derived with the Gateaux derivative and yields

D G (v, δv) · ∆v =

∫
B0

δεT
C∆ε + ∆δεTσ dV , (25)

where

C =
∂2W
∂ε∂ε

=
∂σ

∂ε
(26)

is given by the material law. The linearized virtual shell strain vector

∆δε =
[
∆δε11,∆δε22, 2∆δε12,∆δκ11,∆δκ22, 2∆δκ12,∆δγ1,∆δγ2

]T (27)

has the entries

∆δεαβ =
1
2

(
δx,α · ∆x,β + δx,β · ∆x,α

)
∆δκαβ =

1
2

(
δx,α · ∆d,β + δx,β · ∆d,α + δd,α · ∆x,β + δd,β · ∆x,α

+ x,α · ∆δd,β + x,β · ∆δd,α
)

∆δγα = δx,α · ∆d + δd · ∆x,α + x,α · ∆δd

(28)

and the linearized shell strains ∆ε are obtained by replacing the operator δ by ∆ in (23).

4. Definition of nodal basis systems

There are several ways to interpolate the current director vector and its variations in Reissner-Mindlin shell for-
mulations. The chosen interpolation strategy requires a nodal basis system AI in every control point. The two basis
vectors A1I and A2I define the rotation axis for the rotational degrees-of-freedom and A3I is used for the interpolation
of the director vector. The nodal basis systems have to be computed in a preprocess or given as an input. As in isoge-
ometric analysis the control point net is disjunct from the physical mesh several choices are possible. In the following
two methods to compute the nodal basis systems are discussed. The first is to use an orthonormal basis system in
the closest point projection of the relevant control point. This is an obvious choice and is used in [4] for an isogeo-
metric Reissner-Mindlin shell based on the degenerated solid approach. In the numerical examples in Section 6 the
standard approach uses this method. The second scheme is called calculation of exact basis systems and yields exact
orthonormal interpolated basis systems with correct orientation throughout the whole domain for every discretization.
Together with the presented interpolation of the variation of the director the latter method constitutes the main scope
of this paper.

4.1. Basis systems obtained by closest point projection

The first step of this method is to find the point on the NURBS surface with the smallest distance to the control
point under consideration. In general a solution in closed form to this is not possible. Therefore a Newton-Raphson
iteration with additional computational cost is needed. The theory and an efficient algorithm for the point projection
is given in [7]. In the second step the director vector

DI = A3I =
X,ξ1 × X,ξ2

‖X,ξ1 × X,ξ2‖
(29)
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is computed from the derivatives X,ξ1 and X,ξ2 in the projected point. The other two nodal basis vectors A1I and A2I

are chosen in the plane of the derivatives in a way, that proper enforcement of the boundary conditions is possible and
the nodal basis system is orthogonal.

The accuracy of the interpolated director vector

Dh =

nen∑
I=1

NIDI (30)

is examined for the Scordelis-Lo roof from the shell obstacle course proposed in [10]. Considering symmetry only
a quarter of the system is analyzed, see Fig. 2. Details can be found in Section 6.1 or [10]. The error of length and

Figure 2: Deviation of the interpolated director vector from the normal vector.

direction of the interpolated director is measured with the error norms

L2
length =

√∫
Ω

(
‖Dh‖ − 1

)2dΩ

L2
angle =

√∫
Ω

(
arccos

Dh · N
‖Dh‖‖N‖

)2

dΩ ,

(31)

where N is the exact normal vector with respect to the shell mid-surface. Fig. 2 clearly shows a deterioration of the
interpolated director in the integration points for k-refinement with fixed mesh size. This is due to the fact, that the
number of control points having influence on one element nen = (n − p) (m − q) as well as their distance to the element
grows with the polynomial order p respective q. Thus for curved domains the angle between the individual nodal
directors DI grows. This leads to an addition of vectors with distinct differing directions, which clearly deteriorates
the interpolation. The effect on the convergence behavior is investigated in Section 6.1.

4.2. Calculation of exact basis systems
A new method to determine the nodal basis systems is introduced in the following. The idea is to chose each nodal

basis system in a way, that the interpolated basis system is orthonormal in every integration point, and the director
vector as well as the local rotation axis are in the correct direction. To attain this in every patch a system of equations
is established and solved independently. The three basis vectors Ai entail nine equations in every integration point of
the relevant patch. This yields

(
ngp × nel

)
equations of the type

AGP
i j =

nnp∑
I=1

NI ACP
i jI , (32)
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where ngp is the number of integration points per element and nel is the number of elements in the relevant patch. The
upper bound nnp of the summation in (32) is the number of all control points in the patch under consideration. AGP

i j is
the j-th component of the i-th basis vector of the integration point basis system and analogously ACP

i jI are the unknown
values for the nodal point basis systems at the control point I. For every combination of i and j all equations (32) are
assembled to a system of equations

AGP
i j = NACP

i j , (33)

where the matrix N has
(
ngp × nel

)
rows and nnp columns containing the basis functions NI . The matrix N is identical

for all nine directions and thus only one matrix inversion is necessary to compute all components of the nodal basis
systems. The number of integration points per element ngp must be chosen high enough to entail a determined or
overdetermined system of equations. This is always the case if ngp is chosen sufficiently high for the structural
analysis to be stable. The columns of the matrix N contain the linear independent basis functions NI and therefore all
columns are linear independent, which implies that

rank N = nnp (34)

holds and a unique solution exists, see [11]. Thus the solution of (33) can always be determined by solving the normal
equation

NT AGP
i j =

(
NT N

)
ACP

i j , (35)

which is determined and thus solvable with standard solvers. The resulting nodal basis systems yield exactly inter-
polated director vectors and local rotation axes throughout the whole domain. The number of unknowns in equation
(35) is approximately five times smaller than that of the finite element computation. This signifies that the cost for the
computation of the nodal basis system is negligible. As the influence of all basis functions NI on an element is fixed
by the NURBS geometry description, standard sparse matrix techniques can be applied. The required matrices can be
assembled element-wise by (

NT N
)

(k, l) =

ngp×nel∑
eq=1

(NkNl)eq (36)

and (
NT AGP

i j

)
(k) =

ngp×nel∑
eq=1

(
AGP

i j Nk

)
eq

(37)

to avoid multiplications of the terms NT N and NT AGP
i j on the global level.

5. NURBS-based isogeometric finite element implementation

The isogeometric finite element implementation of the Reissner-Mindlin shell with exactly calculated basis sys-
tems fields is described in the following. For completeness the outline of an isogeometric implementation of a
Reissner-Mindlin shell with standard interpolation of the director vector and nodal basis systems attained by clos-
est point projection is additionally provided. This formulation follows [12] and constitutes the standard approach
used in the numerical examples in Section 6.

5.1. Interpolation of the reference surface and the director vector
The shell middle surface and the initial director vector are interpolated by

X =

nen∑
I=1

NIXI xh =

nen∑
I=1

NIxI D =

nen∑
I=1

NIDI (38)

with the NURBS basis functions NI defined in (5). The superscript h identifies approximated quantities. The position
vectors XI are given as input and the director vectors DI = A3I are taken from the preprocess described in Section 4.
The interpolation of the initial director vector D is only exact if the nodal basis systems are computed with the method
described in Section 4.2.
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The derivatives of the NURBS basis functions given in (7) are with respect to the parametric coordinates ξα and in
general not orthogonal. For the use in the finite element formulation they need to be transformed to the local cartesian
basis t. From the two derivatives

X,ξ1 =

nen∑
I=1

NI,ξ1 XI X,ξ2 =

nen∑
I=1

NI,ξ2 XI (39)

a local lamina basis system spanned by the vectors t1, t2 and t3 is computed as described in [13]. With the Jacobian

J =

 X,ξ1 · t1 X,ξ1 · t2

X,ξ2 · t1 X,ξ2 · t2

 (40)

the local derivatives  NI,1

NI,2

 = J−1
 NI,ξ1

NI,ξ2

 (41)

can be computed. With (41) the derivatives of (38) are interpolated by:

X,α =

nen∑
I=1

NI,αXI xh
,α =

nen∑
I=1

NI,αxI D,α =

nen∑
I=1

NI,αDI (42)

5.1.1. Standard interpolation of the current director vector
In a standard Reissner-Mindlin shell element, see e.g. [12], the orthogonality of the nodal basis system A holds

only at the nodes. Therefore the Rodrigues’ formula

R = 1 +
sinω
ω
Ω +

1 − cosω
ω2 Ω2

Ω = skewω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (43)

with ω = ‖ω‖ is applied to the discrete nodal basis systems AI . For brevity the subscript for the nodal index I is
omitted, but if equation (43) is used for the standard interpolation nodal values ωI have to be used. For values of
ω > 2π a multiplicative update of the rotation tensor is necessary. The interpolation of the current director and the
derivatives is as follows:

dh =

nen∑
I=1

NIdI dh
,α =

nen∑
I=1

NI,αdI dI = RA3I (44)

The interpolation does not maintain the length and the orthogonality of the basis systems. The entailed error turns out
to be negligible for standard finite elements and isogeometric finite elements with a polynomial order p ≤ 2. But for
rising orders p the accuracy of isogeometric computations deteriorates.

5.1.2. Consistent interpolation of the current director vector
Due to the exact interpolation the orthogonality of the basis system A prevails throughout the whole domain. This

allows a consistent determination of the current director

dh = R
nen∑
I=1

NIDI dh
,α = R,α

nen∑
I=1

NIDI + R
nen∑
I=1

NI,αDI (45)

with the rotation tensor R given in (43) and R,α computed as follows:

R,α = c1Ω + c2Ω,α + c3Ω
2 + c4

(
Ω,αΩ +ΩΩ,α

)
Ω,α = skewω,α ω,α =

ω,α · ω

ω

c1 = ω,α
ω cosω − sinω

ω2 c2 =
sinω
ω

c3 = ω,α
ω sinω − 2 + 2 cosω

ω3 c4 =
1 − cosω

ω2

(46)

9



Here for ω the interpolated value in the relevant integration point has to be inserted. For values ω → 0 the factors
c1 = 0, c2 = 1, c3 = 0 and c4 = 1/2 have to be used. The inextensibility of the director field

‖dh‖ = 1 (47)

is exactly fulfilled.

5.2. Interpolation of strains and variated strains

The interpolation of the Green-Lagrange strains ε given in equation (19) is simply performed by replacing all
variables through their interpolated counterparts defined in equations (38), (42) and (44) or (45), respectively. The
procedure to attain the virtual Green-Lagrange strains δεh from δε is akin. It results in

δεh =



δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκh
12

δγh
1

δγh
2


=



δxh
,1 · x

h
,1

δxh
,2 · x

h
,2

δxh
,1 · x

h
,2 + δxh

,2 · x
h
,1

δxh
,1 · d

h
,1 + δdh

,1 · x
h
,1

δxh
,2 · d

h
,2 + δdh

,2 · x
h
,2

δxh
,1 · d

h
,2 + δxh

,2 · d
h
,1 + δdh

,1 · x
h
,2 + δdh

,2 · x
h
,1

δxh
,1 · d

h + δdh · xh
,1

δxh
,2 · d

h + δdh · xh
,2


(48)

with

δxh =

nen∑
I=1

NIδuI δxh
,α =

nen∑
I=1

NI,αδuI . (49)

The interpolation of δdh
,α and δdh is given below for the two presented interpolations.

5.2.1. Standard interpolation of the variated current director vector
The standard approach following [12] interpolates the variated director

δdh =

nen∑
I=1

NIδdI δdh
,α =

nen∑
I=1

NI,αδdI (50)

with
δdI = δwI × dI = WTδwI = WT HδωI = WT HT3δβI = TIδβI , (51)

where
W = skew d . (52)

The matrix
H = 1 +

1 − cosω
ω2 Ω +

ω − sinω
ω3 Ω2 (53)

is derived in [14]. With
T3 =

[
a1 a2

]
(54)

the transformation from local rotations βI to the rotational parameters ωI is achieved. Note that again for ω, d and aα
nodal values ωI , dI and

aαI = RAαI (55)

have to be inserted and therefore all matrices in equation (51) have to be calculated for every node. With (50) at hand
the relation between virtual deformations and virtual strains can be established. This allows the computation of the
stiffness matrix, which requires the second variation of the potential. Its derivation follows the lines of [12]. In the
following only the proposed new approach is described.
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5.2.2. Proposed interpolation of the variated current director vector
The proposed approach for the interpolation of δd does not interpolate the nodal variation of the director, but the

local rotations δβ. This allows a transformation of the rotations from integration point to control point which results
in higher accuracy for curved domains.

Remark 1. In [15] a similar procedure, referred to as full S O (3) update, is discussed. There the current director
vector is computed in the same way as proposed here, but deviating from our approach the rotational parameter vector
δω is interpolated. The proposed approach is more suitable for isogeometric shell analysis, as account is taken for
the differing orientation of the nodal rotations.

For an orthogonal tensor R ∈ S O (3) the variation of the director can be rewritten as

δd = δRD

= δRRT d
= δw × d

= WTδw ,

(56)

where W = skew d. With the two equations

δw = Hδω δω = T3δβ (57)

the relation
δd = WT HT3δβ = Tδβ (58)

is established by using the matrices given in (52), (53) and (54). Here the interpolated values ω, d and

aα = RAα Aα =

nen∑
I=1

NIAαI (59)

have to be inserted. For the interpolation of δβ a transformation from local rotations in the control points δβI to local
rotations in the integration points is introduced. From

δβiai︸︷︷︸
integration point

=

nen∑
I=1

NIβiIaiI︸        ︷︷        ︸
control point

(60)

the relation

δ

β1
β2
β3

 =

nen∑
I=1

NI

a1 · a1I a1 · a2I a1 · a3I

a2 · a1I a2 · a2I a2 · a3I

a3 · a1I a3 · a2I a3 · a3I

 δ
β1I

β2I

β3I

 (61)

can be derived. The drilling rotation δβ3 is fixed as the shell has no drilling stiffness. Therefore with δβ3 = 0 a statical
condensation is possible and δβ3I can be eliminated from equation (61). As result the interpolation

δβh =

nen∑
I=1

NIMIδβI (62)

with

MI =

[
M11I M12I

M21I M22I

]
MαβI = aα · aβI −

(
a3 · aβI

)
(aα · a3I)

a3 · a3I
(63)

is established.
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Remark 2. If the interpolated basis vector a3 and a nodal basis vector a3I are perpendicular the statical condensation
of equation (61) is not possible. In these cases six degrees of freedom like in shell analysis with kinks are needed for
the affected control point. These situations only occur for very coarse meshes and can be avoided by an appropriate
discretization. Sloppyly it is possible to omit the transformation matrix MI which results in a loss of accuracy.

Remark 3. When three nodal rotations for control points on kinks are used and the matrix MI is chosen appropriately
minor additions to the presented theory allow the computation of complicated structures with intersecting surfaces.

The combinination of equation (62) and (58) yields the interpolation

δdh =

nen∑
I=1

NITMIδβI TMI = TMI (64)

of the variation of the director, which contains several spatial variable factors. Thus, the derivation δdh
,α entails

derivation of several matrices. It reads

δdh
,α = T,α

nen∑
I=1

NIMIδβI + T
nen∑
I=1

(
NI,αMI + NIMI,α

)
δβI (65)

with
T,α = WT

,αHT3 + WT H,αT3 + WT HT3,α . (66)

The derivations of the involved matrices are given by

W,α = skew d,α T3,α =
[
a1,α a2,α

]
(67)

and
H,α = h1Ω + h2Ω,α + h3Ω

2 + h4
(
Ω,αΩ +ΩΩ,α

)
h1 = ω,α

ω sinω − 2 (1 − cosω)
ω3 h2 =

1 − cosω
ω2

h3 = ω,α
3 sinω − ω cosω − 2ω

ω4 h4 =
ω − sinω

ω3 ,

(68)

where for small values of ω the limit values h1 = 0, h2 = 1/2, h3 = 0 and h4 = 1/6 have to be used. The derivation of
the transformation matrix reads:

MI,α =

[
M11I,α M12I,α

M21I,α M22I,α

]

MγδI,α = aγ,α · aδI −

[(
a3,α · aδI

) (
aγ · a3I

)
+ (a3 · aδI)

(
aγ,α · a3I

)]
(a3 · a3I)

−

(
a3,α · a3I

)
(a3 · aδI)

(
aγ · a3I

)
(a3 · a3I)2

(69)

The relation between virtual strains and the variations of deformations and rotations, abbreviated with the BI matrix,
can be written as

δεh =



δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκ12h

δγh
1

δγh
2


=

nen∑
I=1



NI,1xhT
,1 0

NI,2xhT
,2 0

NI,1xhT
,2 + NI,2xhT

,1 0
NI,1dhT

,1 b̂hT
11I

NI,2dhT
,2 b̂hT

22I
NI,2dhT

,1 + NI,1dhT
,2 b̂hT

12I + b̂hT
21I

NI,1dhT NIbhT
I1

NI,2dhT NIbhT
I2



[
δuI

δβI

]

δεh =

nen∑
I=1

BIδvI

(70)
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with bh
Iα = TT

MI
xh
,α and b̂h

αβI = T̂T
I,αxh

,β. The matrix T̂I,α is defined by

T̂I,α = T,αMI NI + T
(
NI,αMI + NIMI,α

)
. (71)

5.3. Second variation of the potential
The finite element approximation of equation (24) reads

L [G (v, δv)] =

nel⋃
e=1

nen∑
I=1

nen∑
K=1

(
fe

I + Ke
IK∆vK

)
(72)

with the element stiffness matrix
Ke

IK =

∫
Ω

(
BT

I CBK + GIK

)
dΩ . (73)

and the residual vector
fe

I =

∫
Ω

BT
I σdΩ − fe,ext

I . (74)

The external loads are denoted by fe,ext
I and the initial stress stiffness matrix, which originates from the term ∆δεTσ

in equation (25), by GIK . The factor ∆δε requires the second variation of the current orthogonal basis system. The
interpolation of the linearized virtual strains

∆δεh =



∆δεh
11

∆δεh
22

2∆δεh
12

∆δκh
11

∆δκh
22

2∆δκh
12

∆δγh
1

∆δγh
2


=



(
δxh

,1 · ∆xh
,1

)(
δxh

,2 · ∆xh
,2

)(
δxh

,1 · ∆xh
,2 + δxh

,2 · ∆xh
,1

)(
δxh

,1 · ∆dh
,1 + δdh

,1 · ∆xh
,1 + xh

,1 · ∆δd
h
,1

)(
δxh

,2 · ∆dh
,2 + δdh

,2 · ∆xh
,2 + xh

,2 · ∆δd
h
,2

)(
δxh

,1 · ∆dh
,2 + δxh

,2 · ∆dh
,1 + δdh

,1 · ∆xh
,2

+δdh
,2 · ∆xh

,1 + xh
,1 · ∆δd

h
,2 + xh

,2 · ∆δd
h
,1

)(
δxh

,1 · ∆dh + δdh · ∆xh
,1 + xh

,1 · ∆δd
h
)(

δxh
,2 · ∆dh + δdh · ∆xh

,2 + xh
,2 · ∆δd

h
)



(75)

contains terms of the form h · ∆δdh and h · ∆δdh
,α, where h is an arbitrary vector. The derivation of these products can

be found in Appendix A in detail. The resulting equations (A.1) and (A.14) are inserted into the interpolation of the
linearized virtual strains (75). The membrane and shear part read

∆δεh
αβ =

nen∑
I=1

nen∑
K=1

1
2

(
NI,αNK,β + NI,βNK,α

)
δuT

I 1∆uK

∆δγh
α =

nen∑
I=1

nen∑
K=1

{
δuT

I NI,αNKTMK ∆βK

+ δβT
I NI NK,αTT

MI
∆uK

+δβT
I NI NKM̂IK

(
xh
,α

)
∆βK

}
,

(76)

whereas the curvatures

∆δκh
αβ =

nen∑
I=1

nen∑
K=1

{
1
2
δuT

I

[
NI,αT̂K,β+ NI,βT̂K,α

]
∆βK

+
1
2
δβT

I

[
NK,βT̂T

I,α + NK,αT̂T
I,β

]
∆uK

+
1
2
δβT

I

[
M̂Lα

IK

(
xh
,β

)
+ M̂Rα

IK

(
xh
,β

)
+ M̂Lβ

IK

(
xh
,α

)
+ M̂Rβ

IK

(
xh
,α

)
+ NI NKM̂IK,α

(
xh
,β

)
+NI NKM̂IK,β

(
xh
,α

)]
∆βK

}
(77)
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are more lengthy. All M̂IK matrices used in equations (77) and (76) are derived in Appendix A and provided by
equations (A.2) and (A.15) . Finally the matrix GIK is formed by computing the product

∆δεhTσ =

nen∑
I=1

nen∑
K=1

δvT
I GIK∆vK

=

nen∑
I=1

nen∑
K=1

[
δuI

βI

]T  n̂IK1 m̂uβ
IK + q̂uβ

IK
m̂βu

IK + q̂βu
IK M̂IK

(
ĥ
)

+ m̂ββ
IK

 [∆uK

∆βK

] (78)

with the following entries:

n̂IK = n11NI,1NK,1 + n22NI,2NK,2 + n12 (
NI,1NK,2 + NI,2NK,1

)
m̂uβ

IK = m11NI,1T̂K,1 + m22NI,2T̂K,2 + m12
(
NI,1T̂K,2 + NI,2T̂K,1

)
m̂βu

IK = m11NK,1T̂T
I,1 + m22NK,2T̂T

I,2 + m12
(
NK,1T̂T

I,2 + Nk,2T̂T
I,1

)
q̂uβ

IK =
(
q1NI,1 + q2NI,2

)
NKTMK

q̂βu
IK =

(
q1NK,1 + q2NK,2

)
NITT

MI

m̂ββ
IK = M̂L1

IK

(
h1

)
+ M̂R1

IK

(
h1

)
+ M̂L2

IK

(
h2

)
+ M̂R2

IK

(
h2

)
+ M̂IK,1

(
NI NKh1

)
+ M̂IK,2

(
NI NKh2

)
(79)

The vectors h read:
ĥ = q1NI NKxh

,1 + q2NI NKxh
,2

h1 = m11xh
,1 + m12xh

,2

h2 = m12xh
,1 + m22xh

,2

(80)

6. Numerical examples

The capability of the present shell formulation is demonstrated with the help of five numerical examples. The
first two examples are taken from the shell obstacle course proposed in [10] and benchmark the accuracy of linear
computations. The Scordelis-Lo roof, already briefly introduced in Section 4.1, compares the proposed approach for
the computation of nodal basis systems and the interpolation of the director vector with a standard approach. With
the help of the pinched cylinder the present shell formulation is compared to existing isogeometric shell formulations.
Two further examples inquire the convergence behaviour in the nonlinear regime of the proposed formulation. The
hemispherical shell with hole tests large rigid body rotations and large deformations. The cantilever subjected to
end moment requires a proper treatment of large rotations. The last example demonstrates the improved accuracy of
the present approach for free form surfaces with changing curvature. All computations use a St. Venant-Kirchhoff

material model.

6.1. Scordelis-Lo roof

In Section 4.1 the Scordelis-Lo roof is used to demonstrate the interpolation error of the director for nodal basis
systems attained by a closest point projection. The effect of this interpolation error in combination with the inaccurate
interpolation of the variation of the director vector is shown in the following example. The standard geometry and
material parameters are used. Length and radius are L = 50 respective R = 25 with a shell thickness t = 0.25. The
Young’s modulus is E = 4.32 · 108 with a Poisson’s ratio ν = 0. The system is loaded by a uniform vertical gravity
load per unit area of g = 90. Due to symmetry only one quarter of the system is modeled. In Fig. 3 the system is
sketched, for details see [10]. Computations are linear. The vertical deformations in point A plotted in Fig. 3 converge
to a value of w = −0.3020247. The computations with the present approach clearly show monotonously growing
convergence behaviour for h-refinement for all three plotted orders of NURBS basis functions. In contrast to that,
the standard approach overestimates the deformations for an order p = 6. For an order p = 4 the deformations are
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Figure 3: Scordelis-Lo roof: System sketch and comparison of deformations for h-refinement.

Figure 4: Scordelis-Lo roof: Deformation error for k-refinement.

overestimated for a coarse mesh, then show oscillatory behaviour and finally converge from above. For the lowest
order possible (p = 2) only small differences occur.

To enlighten this issue a k-refinement study is provided in Fig. 4. The chosen k-refinement strategy for increasing
the order of the NURBS basis functions also elevates the continuity. For more details about refinement strategies
see [16]. The deformation error plotted for both approaches for meshes with 5 × 5, 10 × 10 and 20 × 20 elements is
calculated with the vertical deformation w = −0.3020247 in point A as converged solution. The deformation error
for all three discretizations shows correct convergence behaviour for the present approach. The standard approach
obviously diverges for rising orders. The quite low errors for an order p = 4 are a result of the oscillatory behaviour
visible in Fig. 3 and will not occur in general.

6.2. Pinched cylinder
The pinched cylinder is used to compare the accuracy of the present formulation with an isogeometric Kirchhoff-

Love shell proposed by Kiendl et al. in [1] and the isogeometric Reissner-Mindlin shell of Benson et al. [4]. The
system is sketched in Fig. 5 and consists of a cylinder which is constrained at both ends with a rigid diaphragm. The
cylinder has a radius R = 300 and a length L = 600. The material is specified by a Young’s modulus E = 3.0 · 106,
a Poisson’s ratio ν = 0.3 and a wall thickness t = 3. More details can be found in [10]. Due to symmetry only
one eigth of the system is modeled and sketched. The rigid diaphragm is considered as boundary condition. As the
ratio between radius and wall thickness is R/t = 100 the deformations entailed by shear deformation are negligible.
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Figure 5: Pinched Cylinder: System sketch and comparison of deformations.

Thus, Reissner-Mindlin shell formulations should yield results comparable to Kirchhoff-Love shell formulations. All
deformations plotted in Fig. 5 are normalized to 1.83 · 10−5. Computations with the present approach coincide very
well with the reference shell of Kiendl et al. [1] for orders p = 4 and p = 5. For the lowest order p = 2 the presented
Reissner-Mindlin shell clearly converges slower due to locking. The present formulation shows improved accuracy
with rising order p of the NURBS basis functions, which is not the case in the reference computations of Benson et
al. [4].

6.3. Hemispherical shell with hole

Figure 6: Hemispherical shell with hole: System sketch and comparison of deformations.

With the help of the hemispherical shell with hole the ability of the proposed shell formulation to handle large
deformations and large rotations is demonstrated. No nonlinear reference results for isogeometric shell formulations
are available at this time to the authors’ knowledge. Thus, the present approach is compared to own computations
with the standard approach. The system is sketched in Fig. 6. It is a hemispherical shell with an 18◦ hole in the center.
The upper and lower edge are free. The system is loaded with radial point loads 2F on the equatorial edge with
alternating orientation every 90◦. The radius of the hemisphere is R = 10 and the wall thickness is t = 0.04. The St.
Venant-Kirchhoff material has a Young’s modulus E = 6.825·107 and a Poisson’s ratio ν = 0.3. Due to symmetry only
one fourth of the system is modeled. The load of F = 100 is applied in ten loadsteps and yields large deformations
and rotations. The converged deformation u = −5.8614 is used for the normalization of the deformations in Fig. 6. It
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is clearly visible that the present approach yields convergence rates superior to those of the standard approach for all
orders of basis functions and for all discretizations. The present approach with a polynomial order p = 6 and 10 × 10
elements already causes a sufficient accurate solution with a deviation of 0.092%, whereas the standard approach does
not converge at all for this order, even for way smaller loadsteps and finer meshes.

6.4. Cantilever subjected to end moment

Figure 7: Cantilever subjected to end moment: System sketch and comparison of deformations.

The proper handling of large rotations is tested with a plane cantilever. One edge of the cantilever is clamped,
whereas the other end is loaded with an end moment. The deformations of all control points in lateral direction are
linked and the Poisson’s ratio is set ν = 0 to entail a beam-like behaviour. The dimensions of the beam are l = 12 and
b = 1 with a thickness t = 0.1 and a Young’s modulus E = 1.2 · 106. A sketch of the system is given in Fig. 7. An
analytical solution for the displacement u is given according to beam theory as

u (M) =

[
M0

M
sin

(
M
M0

)
− 1

]
l , (81)

where M0 = EI/l = 25/3. The cantilever is fully rolled up for a moment Mmax = 2πM0. The loading M is applied in
10 loadsteps with ∆M = 0.1MMax and should result in u = 12.0 as deformation.

In Fig. 7 load-deflection curves are plotted for different discretizations with the standard and the present approach
and compared to the exact solution. The standard approach with an order p = 6 of the NURBS basis functions
does not converge at all for an elementation with 10 elements in longitudinal direction. A fine mesh with 50 × 1
elements still entails a relatively large error of 1.9 % for the standard approach. In contrast the proposed approach
delivers superior results as it underestimates the deformation by 3.2 % for 1 × 1 element and by 0.15 % for 5 × 1
elements. The load-deflection curve for 5 × 1 elements with an order p = 6 in Fig. 7 is indistinguishable from the
exact solution. The results attained by the standard approach clearly degrade with rising order p of the NURBS basis
functions. Computations with the present approach require in general less load steps to attain convergent results than
the standard approach. A discretization with 16×1 elements of order p = 4 necessitates 10 load steps for the standard
approach, whereas for the present approach 5 load steps suffice. In this example the computation of the nodal basis
systems has no influence as the initial geometry is planar. Thus, the superior results of the present approach are merely
due to the more accurate interpolation of the director vector.

6.5. Double curved free form surface
In contrast to the above standard benchmark examples the proposed new benchmark example has a changing

curvature. Thus, the exact choice of the director vector and a proper treatment of the variation of the director vector is
of huge importance. In Section 6.1 it is obvious that the proposed formulation yields superior results for the Scordelis-
Lo roof, which features a constant curvature, but the differences are small which makes also the standard approach

17



Figure 8: Double curved free form surface: System sketch.

useable for standard applications. The system presented in Fig. 8 is desigend to point out that the computation of
free form surfaces requires the proper treatment of rotations. The information needed to construct the geometry in a
modeling software is given in Appendix B. The lower edge is clamped and all other edges are free. On the top edge
a line load of py = 10 per unit length is applied in y-direction. The material is specified by a wall thickness t = 0.1, a
Young’s modulus E = 1.2 · 106 and a Poisson’s ratio ν = 0.3 . The converged solution used for the deformation errors
is uy = 1.02786. It is computed with 180 × 180 elements with a polynomial order p = 6.

Figure 9: Double curved free form surface: Deformation error in point A.

The error of deformation plotted in Fig. 9 and 10 clearly shows the superior behavior of the proposed formulation.
For meshes with 20 × 20 elements the standard approach yields an error of about 1%, whereas all three orders plotted
for the present approach deviate less than 0.1% from the converged solution. The convergence behavior for coarse
meshes depicted in Fig. 9 shows that meshes with 10 × 10 elements and an order p = 5 are sufficient for standard
applications. In Fig. 10 a log-log graph is given to enlighten the convergence behavior for further mesh refinement.
The error entailed by the present approach is always at least one magnitude smaller than that of the standard approach.
Thus, the computation cost for a given error bound is much smaller for the present approach despite the much higher
numerical effort per integration point for the present approach. In Tab. 1 an exemplary comparison is drawn. The
predefined error bound is ±0.1%. Computations are performed on a 12-core Intel R© XeonTM machine. The assembly
of the stiffness matrix is parallelized with OpenMP. The system is solved with the PARDISO solver from the Intel R©

Math Kernel Library.
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Figure 10: Double curved free form surface: Logscaled deformation error in point A.

approach elements integration time for time for error of
points stiffness solution defor-

matrix mation
present, p = 4 324 8100 0.8 s 0.5 s -0.094%
standard, p = 4 3969 99225 5.6 s 3.9 s 0.106%
present, p = 6 81 3969 1.7 s 0.5 s -0.102%
standard, p = 6 6084 289116 58 s 15.6 s 0.104%

Table 1: Comparison of computation cost.

7. Conclusion

An isogeometric Reissner-Mindlin shell formulation with correct convergence behaviour for k-refinement has
been developed. The improved accuracy is due to the presented new method for the computation of nodal director
vectors and basis systems and the more accurate interpolation of the current director vector and its variation. The
main features of the proposed formulation are:

• The computation of exact nodal basis systems in the control points leads to interpolated director vectors, which
are identical to the normal vector in the reference configuration. Thus, geometry and director vector are exact
for every discretization.

• The current director vector is computed by an orthogonal rotation of the interpolated reference director vector.
This entails an exact fulfillment of the inextensibility constraint.

• The proposed variation of the current director vector interpolating local rotations accounts for the discrepancy
of interpolated basis systems and nodal basis systems. This results in more accurate results for curved structures
and improved convergence behaviour for nonlinear computations. Especially for higher orders of NURBS basis
functions larger load steps are possible than with standard formulations. Thus, computations with coarse meshes
and high order are highly competitive.

The numerical results confirm these conclusions. The low number of integration points needed to attain precise results
when high order basis functions are used makes the presented shell formulation potentially attractive for applications
where high numerical effort per integration point occurs.

Future work will focus on the handling of complicated multi-patch structures with intersecting surfaces.
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Appendix A. Second variation of the current director vector

The derivation of hI ·∆δdI conducted in [14] for nodal values hI and ∆δdI can be adapted straight-forward for the
term h · ∆δdh. This results in

h · ∆δdh = δw ·M (h) ∆w
= HT3δβ ·M (h) HT3∆β

= HT3

 nen∑
I=1

NIMIδβI

 ·M (h) HT3

 nen∑
K=1

NKMKδβK


=

nen∑
I=1

nen∑
K=1

NI NKδβ
T
I M̂IK (h) ∆βK

(A.1)

with
M̂IK (h) = MT

I TT
3 HT M (h) HT3MI . (A.2)

The Matrix M (h) is computed with b = dh × h by

M (h) =
1
2

(
dh ⊗ h + h ⊗ dh + t ⊗ ω + ω ⊗ t

)
+ c101

t = −c3b + c11 (b · ω)ω

c10 = c̄10 (b · ω) −
(
dh · h

)
c3 =

ω sinω + 2 (cosω − 1)
ω2 (cosω − 1)

c̄10 =
sinω − ω

2ω (cosω − 1)

c11 =
4 (cosω − 1) + ω2 + ω sinω

2ω4 (cosω − 1)
.

(A.3)

A series expansion of the coefficients is given in [14] to avoid numerical problems for small values of ω.
The more complicated derivation of h · ∆δdh

,α is attained by partial derivation of the first line in equation (A.1)(
h · ∆δdh

)
,α

= (δw ·M (h) ∆w),α

h · ∆δdh
,α + h,α · ∆δdh = (δw ·M (h) ∆w),α ,

(A.4)

which results after transposing in

h · ∆δdh
,α = δw,α ·M (h) ∆w + δw ·M (h) ∆w,α

+ δw ·M,α (h) ∆w − δw ·M
(
h,α

)
∆w .

(A.5)

Equation (A.5) entails the need for the derivation of the quite involved matrix M (h). After lengthy derivations M,α (h)
can be attained. The resulting matrix contains terms with the derivatives h,α. They prove to cancel out with the matrix
M

(
h,α

)
. Thus the last two terms on the right side of equation (A.5) are combined and the formulation reduces to

h · ∆δdh
,α = δw,α ·M (h) ∆w + δw ·M (h) ∆w,α

+ δw · M̄,α (h) ∆w
(A.6)
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with
M̄,α (h) =

1
2

(
dh
,α ⊗ h + h ⊗ dh

,α

)
+ c10,α1

+
1
2

(
+t̄,α ⊗ ω + ω ⊗ t̄,α + t ⊗ ω,α + ω,α ⊗ t

)
t̄,α = −c3,αb + −c3b,α + c11,α (b · ω)ω

+ c11
(
b,α · ω

)
ω + c11

(
b · ω,α

)
ω + c11 (b · ω)ω,α

b,α = dh
,α × h

c10,α = c̄10,α (b · ω) + c̄10
(
b,α · ω

)
+ c̄10

(
b · ω,α

)
−

(
dh
,α · h

)
.

(A.7)

The required coefficients are

c3,α =
1

180
ωω,α c̄10 =

1
90
ωω,α c11 =

−1
3780

ωω,α (A.8)

for ω→ 0 and

c3,α = ω,α
−ω2 − ω sinω − 4 (cosω − 1)

ω3 (cosω − 1)

c̄10,α =
ω,α

2

(
− sinω − ω

ω2 −
sinω

cosω − 1

)
c11,α = ω,α

cosω [−3ω (sinω − ω) − 16 (cosω − 2)]
2ω5 (cosω − 1)2

+ ω,α
ω sinω

(
11 − ω2

)
+ 3ω2 − 16

2ω5 (cosω − 1)2

(A.9)

in other cases. With the two equations given in (57) δw can be expressed by

δw = HT3δβ (A.10)

and by derivation
δw,α = H,αT3δβ + HT3,αδβ + HT3δβ,α (A.11)

is attained. Here the operators δ and ∆ are again interchangeable. This results in the interpolations

δw =

nen∑
I=1

NIHT3MIδβI (A.12)

and

δw,α =

nen∑
I=1

[
NI

(
H,αT3 + HT3,α

)
MI+

HT3
(
NI,αMI + NIMI,α

)]
δβI .

(A.13)

Insertion of δw, ∆w, δw,α and ∆w,α into equation (A.6) yields finally the expression

h · ∆δdh
,α =

nen∑
I=1

nen∑
K=1

δβT
I

[
M̂Lα

IK (h) + M̂Rα
IK (h)

+NI NKM̂IK,α (h)
]
∆βK

(A.14)

with
M̂IK,α (h) = TT

HT MI
M̄,α (h) THT MK

M̂Lα
IK (h) = TT

HT MI,α
M (NKh) THT MK

M̂Rα
IK (h) = TT

HT MI
M (NIh) THT MK,α

THT MI,α =
(
H,αT3 + HT3,α

)
MI NI + HT3

(
NI,αMI + NIMI,α

)
THT MI = HT3MI

(A.15)
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Appendix B. Geometry of the double curved free form surface

The double curved free form surface used in Section 6.5 can be constructed uniquely from four boundary B-Spline
curves. In Tab. B.2 the control points for all four boundary curves are given. As w = 1 holds for all control points a
B-Spline surface is formed. The knot vector

Ξ =

[
0, 0, 0, 0,

1
3
,

2
3
, 1, 1, 1, 1

]
(B.1)

is identical for all curves. The order of the B-Spline basis functions is p = 3 and the number of control points is n = 6.
Thus, the coarsest mesh consists of 3 × 3 elements.

top bottom left right
Control points 0,0,15 0,0,0 0,0,0 11,0,0
(x,y,z) 11

9 , 2
3 ,15 5,0,0 0,0,5 11,0, 8

3
11
3 , 2,15 5,5,0 0,2,7 11, 2

9 , 62
9

22
3 ,4,15 10,5,0 0,2,10 11, 17

9 , 101
9

88
9 , 16

3 ,15 10,0,0 0,0,12 11, 13
3 , 41

3
11,6,15 11,0,0 0,0,15 11,6,15

Table B.2: Control points of the four boundary curves.
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